


Article history: **Received 23 September 2023 Revised 16 December 2023** Accepted 27 December 2023 Published online 01 January 2024



Volume 4, Issue 1, pp 172-182



# **Factors Affecting the Performance of the LARG Supply Chain** Using Qualitative Methods in Poultry Farming in Gilan Province

Kaveh. Kafili Kasmaei 10, Arshad. Farahmandian20, Homa. Doroudi3\*0, Nabiullah. Mohammadi30

<sup>1</sup> PhD Student in Industrial Management, Department of Management, Zanjan Branch, Islamic Azad University, Zanjan, Iran <sup>2</sup> Assistant Professor, Department of Management, Zanjan Branch, Islamic Azad University, Zanjan, Iran <sup>3</sup> Associate Professor, Department of Management, Zanjan Branch, Islamic Azad University, Zanjan, Iran

\* Corresponding author email address: afarahmandian110@gmail.com

#### Article Info

Article type: Original Research

#### How to cite this article:

Kafili Kasmaei, K., Farahmandian, A., Doroudi, H., & Mohammadi, N. (2024). Factors Affecting the Performance of the LARG Supply Chain Using Qualitative Methods in Poultry Farming in Gilan Province. International Journal of Innovation Management and Organizational Behavior, 4(1), 172-182.

https://doi.org/10.61838/kman.ijimob.4.1.20



© 2024 the authors. Published by KMAN Publication Inc. (KMANPUB), Ontario, Canada. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0International (CC BY-NC 4.0) License.

# ABSTRACT

Objective: The aim of this research is to identify the factors affecting the performance of the LARG supply chain using qualitative methods in poultry farming in Gilan Province.

Methodology: This research adopts a qualitative approach and utilizes the grounded theory method. Data were collected through semi-structured in-depth interviews. Twenty experts and specialists, including university faculty members and managers with at least 15 years of experience in management, were selected through purposive sampling and the snowball technique. The validity of this research was examined and confirmed by the interviewees and subsequently by specialized professors. To assess reliability, the test-retest method was employed. The reliability of the interviews conducted in this study was 84%, and since this value is above 60%, the reliability of the coding is confirmed. Data were analyzed using the constant comparative method in three stages: open coding, axial coding, and selective coding. The qualitative findings were analyzed using MAXQDA software, and ultimately, the paradigmatic model of the supply chain was explained.

Findings: The model's goodness-of-fit indices indicated a satisfactory fit of the data with the conceptual model, meaning that the quantitative data were in good agreement with the conceptual model of the research and supported the qualitative data.

Conclusion: The study revealed that several key factors, including customer relationship management, service delivery management, information management, employee management, financial management, capacity and resources management, pollution management, ethical management, economic factors, social factors, technological environment, political environment, and laws and policies significantly influence the supply chain performance. Keywords: LARG supply chain, poultry farming, agile, lean, grounded theory.

# 1 Introduction

The poultry industry is a critical component of the agricultural sector, significantly contributing to food security and economic stability worldwide. In recent years, the complexities of supply chain management (SCM) within this sector have been amplified due to various factors, including biosecurity challenges, regulatory pressures, and the increasing need for sustainability (Anvari, 2021). Supply chain management plays a vital role in ensuring the efficiency and effectiveness of poultry production. Effective SCM can enhance productivity, reduce costs, and ensure the timely delivery of quality products (Beamon, 1999). The integration of SCM practices can significantly impact firm performance, as evidenced by various meta-analyses and empirical studies (Leuschner et al., 2013; Liu et al., 2022).

The poultry supply chain is fraught with numerous challenges, such as the prevalence of foodborne pathogens, antibiotic use, and biosecurity issues. Studies have shown that poor management practices can increase the prevalence of pathogens like Campylobacter, which is a significant concern for both human health and poultry welfare (Hakeem & Lu, 2021; Sibanda et al., 2018). Furthermore, the overuse of antibiotics in poultry production has raised alarms regarding antimicrobial resistance, making the implementation of stringent biosecurity measures imperative (Masud et al., 2020; Poudel et al., 2023).

Biosecurity preparedness is a critical aspect of poultry farm management, particularly in the context of large and small farms. Research conducted in the United Arab Emirates highlights the importance of biosecurity protocols to mitigate disease outbreaks and enhance farm productivity (Fathelrahman et al., 2020). Similar concerns are echoed in studies from Bangladesh and Nepal, where dependencies and dynamics within the supply chain affect antibiotic use and biosecurity practices (Masud et al., 2020; Poudel et al., 2023).

The advent of digitalization and big data analytics has transformed supply chain practices across various industries, including poultry farming. The integration of these technologies facilitates better monitoring, analysis, and decision-making, ultimately improving supply chain performance (Hamed & Bohari, 2022; Liu et al., 2022). Automated techniques for monitoring the behavior and welfare of broilers and laying hens are moving towards the goal of precision livestock farming, offering significant advancements in ensuring animal welfare and operational efficiency (Li et al., 2020). Sustainability and resilience are increasingly becoming focal points in the discourse on supply chain management. The LARG supply chain paradigm, which encompasses Lean, Agile, Resilient, and Green practices, is particularly relevant in the context of the poultry industry. These practices aim to create a balance between efficiency and adaptability, ensuring that supply chains can withstand and recover from disruptions while minimizing environmental impact (Anvari, 2021; Kler et al., 2022).

The importance of sustainable practices is underscored by the need to manage environmental impacts such as waste reduction and energy efficiency. Studies have shown that the implementation of green supply chain management practices can lead to significant improvements in environmental performance, which is critical for the long-term viability of the poultry industry (Hamed & Bohari, 2022; Sezen, 2008).

Management practices play a crucial role in determining the performance of supply chains. Effective management can mitigate risks, enhance coordination, and improve overall supply chain efficiency. Various studies have highlighted the positive impact of integrated management practices on supply chain performance, emphasizing the need for strategic alignment and collaboration across the supply chain network (Samaranayake & Laosirihongthong, 2016; Wilujeng et al., 2022).

In the context of the poultry industry, management practices that prioritize biosecurity, animal welfare, and environmental sustainability are essential. Research has shown that poor management practices can lead to increased disease prevalence, reduced animal welfare, and significant economic losses (Golden et al., 2021; Sibanda et al., 2018).

This study aims to identify and analyze the factors affecting the performance of the LARG supply chain in poultry farming in Gilan Province using qualitative methods. The study adopts a grounded theory approach, utilizing semi-structured in-depth interviews with experts and stakeholders to gather data. This method allows for a comprehensive understanding of the complexities and dynamics of the poultry supply chain in the region.

- To identify the key factors influencing the performance of the LARG supply chain in poultry farming.
- To understand the interplay between these factors and how they impact overall supply chain performance.
- To develop a conceptual model that explains the relationships between these factors and provides insights into improving supply chain practices.



# 2 Methods and Materials

The methodology used in this research is qualitative. The present research is applied in nature. In applied research, the results derived from existing knowledge and technology are practically utilized and extended in possible or specific fields to gain practical application if successful. The statistical population consists of two groups. The first group includes 25 experts and specialists who are faculty members of Northern universities in the field of Industrial Management. The second group consists of 70 experienced experts and managers from poultry production companies in northern cities who have at least 15 years of experience in commercial management. Sampling of cities in Gilan Province in this stage of the research is purposeful. Additionally, the snowball sampling technique is employed in this phase. Snowball sampling is a method in which sample units provide information about themselves and other community units to the researcher. Initially, an initial group is selected for interviews, and subsequently, interviews with other groups are conducted based on the recommendations of the first group. Interviews continue until no new ideas emerge, indicating theoretical saturation. It is worth noting that code repetition was observed from the fourteenth interview; however, data collection continued until the twentieth interview to ensure full theoretical saturation, resulting in a total of 20 interviews. Data collection in the qualitative section is conducted through interviews with a guided approach and semi-structured format. All participants are informed of the interview's purpose and questions via email in advance. Interviews are conducted following telephone follow-ups, consent from individuals, and scheduling of location and time. Before starting the interviews, the

researcher conducts a comprehensive and in-depth review of the literature on LARG supply chain both in Iran and globally, and a study on LARG supply chain theories. The result of these reviews leads to the preparation of an initial list of questions, which, after validation by guiding and consulting professors, are formulated into a form to be asked of experts. In this phase, the interview begins with a question asking the interviewee to describe a sample of the LARG supply chain in recent years. To measure the reliability of this research, the test-retest method is used. Initially, the number of agreements is doubled and divided by the total number of codes. If the resulting value is above 60%, the reliability of the analysis is deemed appropriate, confirming the reliability of the coding. In the present research, the data obtained from interview texts were analyzed using MAXQDA software for increased accuracy and research speed.

# **3** Findings and Results

In the present research, data obtained from interview texts were analyzed using MAXQDA software for increased accuracy and speed. In the first stage, open coding was conducted, followed by the formation of concepts from the initial codes, and finally, categories were derived from the relationships among concepts. In the open coding stage, 419 codes extracted from 20 precise interviews with experts and specialists in the research field were converted into 128 more abstract concepts, ultimately resulting in the identification of 23 categories. The results of this stage, including the formation of concepts and related categories, are shown in Table 1.

# Table 1

Concepts and Categories Derived from the Open Coding Stage Concepts and Categories Derived from the Open Coding Stage

| No. Conce | ept                           | Category                         |
|-----------|-------------------------------|----------------------------------|
| 1 Critic  | cisms and complaints          | Customer Relationship Management |
| 2 Accep   | ptance method                 |                                  |
| 3 Custo   | omer relationship system      |                                  |
| 4 Custo   | omer loyalty                  |                                  |
| 5 Custo   | omer value                    |                                  |
| 6 Custo   | omer satisfaction             |                                  |
| 7 Corre   | ect services                  | Service Delivery Management      |
| 8 Avera   | age service delivery time     |                                  |
| 9 Servi   | ce attractiveness             |                                  |
| 10 Comp   | pany image                    |                                  |
| 11 Respo  | onse speed                    |                                  |
| 12 Servie | ce quality                    |                                  |
| 13 Inform | mation accuracy and precision | Information Management           |

IJIMOB

| 14       | Timeliness of information                                                            |                                   |
|----------|--------------------------------------------------------------------------------------|-----------------------------------|
| 15       | Information exchange credibility                                                     |                                   |
| 16       | Information exchange volume                                                          |                                   |
| 17       | Job rotation                                                                         | Employee Management               |
| 18       | Employee rewards                                                                     |                                   |
| 19       | Employee safety and health                                                           |                                   |
| 20       | Employee satisfaction                                                                |                                   |
| 21       | Employee training                                                                    |                                   |
| 22       | Employee development and motivation                                                  |                                   |
| 23       | Costs                                                                                | Financial Management              |
| 24       | Equipment prices                                                                     |                                   |
| 25       | Return on investment                                                                 |                                   |
| 26       | Productivity                                                                         | Capacity and Resources Management |
| 27       | Technology (up-to-date resources)                                                    |                                   |
| 28       | Workforce utilization percentage                                                     |                                   |
| 29       | Workforce occupancy rate                                                             |                                   |
| 30       | Number of workforce                                                                  |                                   |
| 31       | Number of active workforce                                                           |                                   |
| 32       | Waste                                                                                | Pollution Management              |
| 33       | Workshop greenness                                                                   |                                   |
| 34       | Environmental considerations of the workshop                                         |                                   |
| 35       | Chemical gas emissions                                                               |                                   |
| 36       | Overall waste toxicity                                                               |                                   |
| 37       | Workshop physical appearance                                                         |                                   |
| 38       | Workshop green space                                                                 |                                   |
| 39       | Corruption and bribery                                                               | Ethical Management                |
| 40       | Manager's behavior with customers                                                    | C                                 |
| 41       | Worker's behavior with customers                                                     |                                   |
| 42       | Administrative staff behavior with customers                                         |                                   |
| 43       | Customer privacy protection                                                          |                                   |
| 44       | Suitability of the country's economic infrastructure for development                 | Economic Factors                  |
| 45       | High government investment in production                                             |                                   |
| 46       | High government investment in production training                                    |                                   |
| 47       | Suitability of the country's economic space for improving production programs        |                                   |
| 48       | Existence of formal and informal connections with other production centers           | Social Factors                    |
| 49       | Attractiveness of production programs                                                |                                   |
| 50       | Standardization of production programs                                               |                                   |
| 51       | Cultural value similarity of the production sector                                   |                                   |
| 52       | Production sector officials' beliefs and attitudes toward society                    |                                   |
| 53       | Government spending on technology research and development                           | Technological Environment         |
| 54       | Improvement of production productivity through IT                                    | reemological Environment          |
| 55       | Speed and quality of communication and information exchange in the production sector |                                   |
| 56       | Government attention to developing IT infrastructure in production                   |                                   |
| 57       | Role of political institutions on internal production issues                         | Political Environment             |
| 58       | Emergence of internal issues influenced by uncontrollable external procedures        | Fondear Environment               |
| 58<br>59 | Existence of formal and informal political communication channels                    |                                   |
| 59<br>60 | Attention to international organizations' standards and policies                     |                                   |
|          |                                                                                      | Louis and Daliains                |
| 61<br>62 | Equipment sanctions                                                                  | Laws and Policies                 |
| 62<br>62 | Environmental requirements                                                           |                                   |
| 63       | Relationships with environmentally friendly suppliers                                |                                   |
| 64<br>(5 | Waste reduction                                                                      |                                   |
| 65       | Energy consumption saving                                                            |                                   |
| 66       | Internal social responsibility                                                       | Community and Stakeholders        |
| 67       | External social responsibility                                                       |                                   |
| 68       | Preventive training                                                                  |                                   |
| 69       | Modernity and up-to-date                                                             | Equipment                         |
| 70       | Sufficiency                                                                          |                                   |
| 71       | Ease of use                                                                          |                                   |
| 72       | Flexibility                                                                          |                                   |
| 73       | Customer attraction                                                                  | Demand Management                 |
| 74       | Customer visit forecasting                                                           |                                   |

Kafili Kasmaei et al.

**IJIMOB** 

| 75  | Customer needs forecasting                                                        |                                            |
|-----|-----------------------------------------------------------------------------------|--------------------------------------------|
| 76  | Delivery time and speed                                                           | Supplier Relationship Management           |
| 77  | Quality of delivered goods and services                                           |                                            |
| 78  | Flexibility in the volume of delivered goods and services                         |                                            |
| 79  | Price of delivered goods                                                          |                                            |
| 80  | Supplier commitment                                                               |                                            |
| 81  | Rapid service update                                                              | Environmental Dynamics                     |
| 82  | Rapid advancement of new technologies in the production sector                    |                                            |
| 83  | Differing environmental factors                                                   |                                            |
| 84  | Difficulty predicting customer needs changes                                      |                                            |
| 85  | Perfect competition market                                                        | Market Conditions                          |
| 86  | Monopoly market                                                                   |                                            |
| 87  | Rapid changes in market customer preferences                                      |                                            |
| 88  | Increasing new customer needs                                                     |                                            |
| 89  | Accuracy                                                                          | Time Constraints                           |
| 90  | Error and risk rate                                                               |                                            |
| 91  | Rapid reaction                                                                    |                                            |
| 92  | Setting general goals                                                             | Production Promotion Planning              |
| 93  | Specific and strategies                                                           |                                            |
| 94  | Strategy implementation determination                                             |                                            |
| 95  | Strategy alignment with needs                                                     |                                            |
| 96  | Problem analysis                                                                  |                                            |
| 97  | Operational program design and adjustment                                         |                                            |
| 98  | Public attention and participation in the program                                 | Policymaking                               |
| 99  | Mentioning the concept of production promotion in the company's mission and goals |                                            |
| 100 | Policy formulation for launching and implementing production promotion programs   |                                            |
| 101 | Sufficient investment for implementing production promotion projects              |                                            |
| 102 | Identifying and reducing environmental pollution                                  | Environmental Management System            |
| 103 | Reducing operational costs and waste disposal                                     |                                            |
| 104 | Formulating environmental policies                                                |                                            |
| 105 | Reducing pollutant and hazardous substance emissions in the environment           |                                            |
| 106 | Monitoring program progress and revising the environmental management plan        |                                            |
| 107 | Company collaboration with other foreign companies                                | Improving Joint Collaboration              |
| 108 | Collaboration among different units within the company                            |                                            |
| 109 | Employee participation in collaboration across different sectors                  |                                            |
| 110 | Employee participation in increasing production                                   |                                            |
| 111 | Reducing customer dissatisfaction                                                 | Reducing Error Risk                        |
| 112 | Reducing manufacturing errors                                                     |                                            |
| 113 | Reducing production waste                                                         |                                            |
| 114 | Reducing errors in the production process                                         |                                            |
| 115 | Reducing errors in the use of technology and equipment                            |                                            |
| 116 | Modern and up-to-date company equipment                                           | Improving Service Quality                  |
| 117 | Employee interest in solving company problems                                     |                                            |
| 118 | Quick and prompt service delivery                                                 |                                            |
| 119 | Polite and friendly employee behavior with customers                              |                                            |
| 120 | Understanding and meeting the specific needs of each customer                     |                                            |
| 121 | Training and care programs                                                        | Promoting Professional Status of Personnel |
| 122 | Behavioral training programs                                                      |                                            |
| 123 | Technological training programs                                                   |                                            |
| 124 | Motivational incentives                                                           |                                            |
| 125 | Reducing pollutant emissions                                                      | Improving Environmental Status             |
| 126 | Cost reduction                                                                    |                                            |
| 127 | Reducing environmental pollution management                                       |                                            |
| 128 | Improving waste categorization                                                    |                                            |

Axial coding is the second stage of the grounded theory method, requiring more focus. Axial coding is the process of relating categories to their subcategories. For this purpose, categories and the relationships among them are classified using the axial coding paradigm, including the central phenomenon, causal conditions, strategies (actions and interactions), contextual conditions, intervening conditions, and consequences.



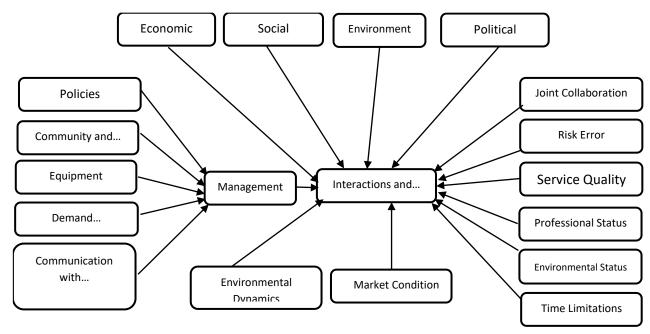
Selective coding, the third stage of the grounded theory method, is the theory refinement process. Selective coding is the main stage of theorizing. During the selective coding process and integration, the transcribed interview texts were re-examined, and sentences and ideas indicating the relationship between main and subcategories were considered. In this stage, the central phenomenon around which other categories revolve and form a whole is systematically selected and described abstractly, linking it to other categories to present a comprehensive description of the process studied. The results of open and axial coding lead to selective coding, indicating that the supply chain is a function of causal conditions, contextual conditions, and intervening conditions. These factors prepare the conditions for the central phenomenon, leading to consequences.

Accordingly, the conceptual model presented in Figure 1 shows the relationships between the main categories derived from the qualitative analysis process. As mentioned, the causal conditions of the supply chain consist of five categories. To confirm whether these categories are correctly measured by their respective indicators, first-order confirmatory factor analysis is used. Table 2 presents the factor loadings of each indicator.

## Table 2

Factor Loadings of Indicators for Causal Conditions of the Supply Chain

| Factor Loading | Indicator                                                 | Factor                           |
|----------------|-----------------------------------------------------------|----------------------------------|
| 0.925          | Equipment sanctions                                       | Laws and Policies                |
| 0.947          | Environmental requirements                                |                                  |
| 0.950          | Relationships with environmentally friendly suppliers     |                                  |
| 0.938          | Waste reduction                                           |                                  |
| 0.952          | Energy consumption saving                                 |                                  |
| 0.965          | Internal social responsibility                            | Community and Stakeholders       |
| 0.949          | External social responsibility                            |                                  |
| 0.971          | Preventive training                                       |                                  |
| 0.932          | Modernity and up-to-date                                  | Equipment                        |
| 0.941          | Sufficiency                                               |                                  |
| 0.944          | Ease of use                                               |                                  |
| 0.956          | Flexibility                                               |                                  |
| 0.920          | Customer attraction                                       | Demand Management                |
| 0.967          | Customer visit forecasting                                |                                  |
| 0.901          | Customer needs forecasting                                |                                  |
| 0.955          | Delivery time and speed                                   | Supplier Relationship Management |
| 0.966          | Quality of delivered goods and services                   |                                  |
| 0.922          | Flexibility in the volume of delivered goods and services |                                  |
| 0.818          | Price of delivered goods                                  |                                  |
| 0.997          | Supplier commitment                                       |                                  |




# IJIMOB

Kafili Kasmaei et al.

# Figure 1

Conceptual Model



As observed, none of the factor loadings in the above table are less than 0.4, indicating that the model components are appropriate and the indicators adequately measure the constructs. The contextual conditions of the supply chain consist of four categories. To confirm whether these categories are correctly measured by their respective indicators, first-order confirmatory factor analysis is used. Table 3 presents the factor loadings of each indicator.

# Table 3

Factor Loadings of Indicators for Contextual Conditions of the Supply Chain

| Factor Loading | Indicator                                                                            | Factor                    |
|----------------|--------------------------------------------------------------------------------------|---------------------------|
| 0.749          | Suitability of the country's economic infrastructure for development                 | Economic Factors          |
| 0.925          | High government investment in production                                             |                           |
| 0.891          | High government investment in production training                                    |                           |
| 0.874          | Suitability of the country's economic space for improving production programs        |                           |
| 0.973          | Existence of formal and informal connections with other production centers           | Social Factors            |
| 0.948          | Attractiveness of production programs                                                |                           |
| 0.985          | Standardization of production programs                                               |                           |
| 0.785          | Cultural value similarity of the production sector                                   |                           |
| 0.958          | Production sector officials' beliefs and attitudes toward society                    |                           |
| 0.847          | Government spending on technology research and development                           | Technological Environment |
| 0.983          | Improvement of production productivity through IT                                    |                           |
| 0.996          | Speed and quality of communication and information exchange in the production sector |                           |
| 0.987          | Government attention to developing IT infrastructure in production                   |                           |
| 0.906          | Role of political institutions on internal production issues                         | Political Environment     |
| 0.934          | Emergence of internal issues influenced by uncontrollable external procedures        |                           |
| 0.892          | Existence of formal and informal political communication channels                    |                           |
| 0.967          | Attention to international organizations' standards and policies                     |                           |

As observed, none of the factor loadings in the above table are less than 0.4, indicating that the model components

are appropriate and the indicators adequately measure the constructs.



Rapid service update

Indicator

|       | 1 1                                                            |                   |
|-------|----------------------------------------------------------------|-------------------|
| 0.979 | Rapid advancement of new technologies in the production sector |                   |
| 0.837 | Differing environmental factors                                |                   |
| 0.909 | Difficulty predicting customer needs changes                   |                   |
| 0.939 | Perfect competition market                                     | Market Conditions |
| 0.983 | Monopoly market                                                |                   |
| 0.917 | Rapid changes in market customer preferences                   |                   |
| 0.951 | Increasing new customer needs                                  |                   |
| 0.957 | Accuracy                                                       | Time Constraints  |
| 0.920 | Error and risk rate                                            |                   |
| 0.922 | Rapid reaction                                                 |                   |

As observed, none of the factor loadings in the above table are less than 0.4, indicating that the model components are appropriate and the indicators adequately measure the constructs.

The action and interaction conditions of the supply chain consist of three categories. To confirm whether these categories are correctly measured by their respective indicators, first-order confirmatory factor analysis is used. Table 5 presents the factor loadings of each indicator.

# Table 5

Factor Loadings of Indicators for Action and Interaction (Strategies) Conditions of the Supply Chain

| Factor Loading | Indicator                                                                         | Factor                          |
|----------------|-----------------------------------------------------------------------------------|---------------------------------|
| 0.789          | Setting general goals                                                             | Production Promotion Planning   |
| 0.768          | Specific and strategies                                                           |                                 |
| 0.772          | Strategy implementation determination                                             |                                 |
| 0.973          | Strategy alignment with needs                                                     |                                 |
| 0.916          | Problem analysis                                                                  |                                 |
| 0.874          | Operational program design and adjustment                                         |                                 |
| 0.892          | Public attention and participation in the program                                 | Policymaking                    |
| 0.935          | Mentioning the concept of production promotion in the company's mission and goals |                                 |
| 0.958          | Policy formulation for launching and implementing production promotion programs   |                                 |
| 0.941          | Sufficient investment for implementing production promotion projects              |                                 |
| 0.894          | Identifying and reducing environmental pollution                                  | Environmental Management System |
| 0.918          | Reducing operational costs and waste disposal                                     |                                 |
| 0.963          | Formulating environmental policies                                                |                                 |
| 0.948          | Reducing pollutant and hazardous substance emissions in the environment           |                                 |
| 0.921          | Monitoring program progress and revising the environmental management plan        |                                 |

As observed, none of the factor loadings in the above table are less than 0.4, indicating that the model components are appropriate and the indicators adequately measure the constructs.

The consequences of the supply chain consist of five categories. To confirm whether these categories are correctly measured by their respective indicators, first-order confirmatory factor analysis is used. Table 6 presents the factor loadings of each indicator.

IJIMOB

E-ISSN: 3041-8992

The intervening conditions of the supply chain consist of three categories. To confirm whether these categories are correctly measured by their respective indicators, first-order

Factor Loadings of Indicators for Intervening Conditions of the Supply Chain

Kafili Kasmaei et al.

confirmatory factor analysis is used. Table 4 presents the factor loadings of each indicator.

Factor

**Environmental Dynamics** 

# IJIMOB

Table 4

0.992

Factor Loading

**IJIMOB** 

Kafili Kasmaei et al.

# Table 6

Factor Loadings of Indicators for Consequences Conditions of the Supply Chain

| Factor Loading | Indicator                                                        | Factor                                     |
|----------------|------------------------------------------------------------------|--------------------------------------------|
| 0.977          | Company collaboration with other foreign companies               | Improving Joint Collaboration              |
| 0.949          | Collaboration among different units within the company           |                                            |
| 0.913          | Employee participation in collaboration across different sectors |                                            |
| 0.937          | Reducing customer dissatisfaction                                | Reducing Error Risk                        |
| 0.900          | Reducing manufacturing errors                                    |                                            |
| 0.919          | Reducing production waste                                        |                                            |
| 0.978          | Reducing errors in the production process                        |                                            |
| 0.981          | Reducing errors in the use of technology and equipment           |                                            |
| 0.857          | Modern and up-to-date company equipment                          | Improving Service Quality                  |
| 0.996          | Employee interest in solving company problems                    |                                            |
| 0.915          | Quick and prompt service delivery                                |                                            |
| 0.979          | Polite and friendly employee behavior with customers             |                                            |
| 0.969          | Understanding and meeting the specific needs of each customer    |                                            |
| 0.888          | Training and care programs                                       | Promoting Professional Status of Personnel |
| 0.998          | Behavioral training programs                                     |                                            |
| 0.928          | Technological training programs                                  |                                            |
| 0.995          | Motivational incentives                                          |                                            |
| 0.976          | Reducing pollutant emissions                                     | Improving Environmental Status             |
| 0.912          | Cost reduction                                                   |                                            |
| 0.914          | Reducing environmental pollution management                      |                                            |
| 0.955          | Improving waste categorization                                   |                                            |

As observed, none of the factor loadings in the above table are less than 0.4, indicating that the model components are appropriate and the indicators adequately measure the constructs.

#### 4 Discussion and Conclusion

The aim of this study was to identify and analyze the factors affecting the performance of the LARG supply chain in poultry farming in Gilan Province using qualitative methods. The study revealed that several key factors, including customer relationship management, service delivery management, information management, employee management, financial management, capacity and resources management, pollution management, ethical management, economic factors, social factors, technological environment, political environment, and laws and policies significantly influence the supply chain performance. These factors included customer relationship management, service delivery management, information management, employee management, financial management, capacity and resources management, pollution management, ethical management, economic factors, social factors, technological environment, political environment, and laws and policies.

Customer relationship management (CRM) and service delivery management emerged as significant categories influencing the performance of the LARG supply chain. Elements such as customer satisfaction, loyalty, and effective communication were highlighted as essential components. This aligns with the findings of Beamon (1999), who emphasized the importance of customer satisfaction and service quality in supply chain performance (Beamon, 1999). Additionally, Golden, Rothrock, and Mishra (2021) highlighted the necessity of mapping foodborne pathogen contamination to improve customer trust and service quality in poultry supply chains (Golden et al., 2021).

Information management, focusing on the accuracy, timeliness, and credibility of information exchange, was identified as a crucial factor. This finding is consistent with Sezen (2008), who discussed the relative effects of information sharing on supply chain performance (Sezen, 2008). Effective employee management, including job satisfaction, training, and safety, was also found to be pivotal. Hakeem and Lu (2021) emphasized the need for proper training and management practices to control pathogens in poultry environments, underscoring the relevance of employee management in maintaining supply chain resilience and hygiene standards (Hakeem & Lu, 2021).

Financial management, encompassing cost control, equipment pricing, and return on investment, was another critical factor. This is supported by Liu et al. (2022), who discussed the impact of digitalization on supply chain integration and financial performance (Liu et al., 2022). Capacity and resources management, which includes workforce utilization and technological advancements, were also significant. Li et al. (2020) reviewed automated techniques for monitoring behavior and welfare, highlighting the role of technology in enhancing capacity management (Li et al., 2020).

Pollution management and ethical management were also identified as significant factors. The study found that managing waste, reducing emissions, and maintaining environmental standards are crucial for a sustainable supply chain. This aligns with the work of Anvari (2021), who integrated LARG supply chain paradigms to improve performance sustainable (Anvari, 2021). Ethical management practices, including addressing corruption and ensuring fair treatment of employees and customers, were emphasized, which resonates with the findings of Sibanda et al. (2018), who reviewed the impact of management practices on pathogen prevalence (Sibanda et al., 2018).

Economic factors, such as the suitability of economic infrastructure and government investment, were found to be influential. This supports Fathelrahman et al. (2020), who highlighted the role of biosecurity and economic factors in enhancing farm productivity (Fathelrahman et al., 2020). Social factors, including cultural values and societal beliefs, were also important, as noted by Masud et al. (2020) in their study on antibiotic use in Bangladesh's poultry industry (Masud et al., 2020). Technological environment factors, such as IT infrastructure and innovation, were crucial for improving efficiency and sustainability (Hamed & Bohari, 2022; Li et al., 2020).

The political environment and laws and policies were found to be critical in shaping the supply chain dynamics. Government regulations, environmental requirements, and relationships with suppliers were significant factors. This finding aligns with the work of Hafez and Attia (2020), who discussed the challenges posed by COVID-19 and the need for strategic future planning in the poultry industry (Hafez & Attia, 2020).

One of the primary limitations of this study is its reliance on qualitative data from a specific geographical location, which may limit the generalizability of the findings. The study's sample size, while sufficient for grounded theory analysis, may not capture the full diversity of experiences and practices in different regions or contexts. Additionally, the study did not incorporate quantitative data, which could provide a more comprehensive understanding of the supply chain dynamics. Future research should consider expanding the geographical scope to include multiple regions and countries, providing a more comprehensive view of the factors affecting the LARG supply chain in poultry farming. Incorporating quantitative data alongside qualitative methods would offer a more robust analysis, allowing for the validation of findings through statistical techniques. Longitudinal studies could also provide insights into how these factors evolve over time and the long-term impacts on supply chain performance.

Another area for future research is the exploration of technological advancements in supply chain management. Investigating the impact of emerging technologies such as blockchain, artificial intelligence, and IoT on the LARG supply chain could provide valuable insights into how these innovations can enhance efficiency, transparency, and sustainability.

For practitioners in the poultry industry, the findings of this study highlight the importance of integrating comprehensive management practices that address multiple facets of the supply chain. Implementing robust CRM and service delivery management systems can enhance customer satisfaction and loyalty, which are critical for maintaining a competitive edge. Investing in employee training and welfare programs can improve operational efficiency and reduce the risk of pathogen outbreaks, as emphasized by other researchers (Eldin et al., 2023; Hakeem & Lu, 2021; Ucenic & Ratiu, 2017).

Adopting advanced information management systems to ensure the accuracy and timeliness of data exchange can significantly enhance decision-making processes and overall supply chain coordination. Financial management practices that focus on cost control and return on investment are crucial for maintaining profitability in a competitive market.

Furthermore, practitioners should prioritize environmental sustainability by implementing green supply chain practices, such as waste reduction and energy efficiency, which are critical for long-term viability and compliance with regulatory standards. Ethical management practices should also be a focus, ensuring fair treatment of all stakeholders and fostering a positive organizational culture.

# Authors' Contributions

All authors have contributed significantly to the research process and the development of the manuscript.

# Declaration

In order to correct and improve the academic writing of our paper, we have used the language model ChatGPT.

#### **Transparency Statement**

Data are available for research purposes upon reasonable request to the corresponding author.

### Acknowledgments

We would like to express our gratitude to all individuals helped us to do the project.

# **Declaration of Interest**

The authors report no conflict of interest.

# Funding

According to the authors, this article has no financial support.

## **Ethical Considerations**

In this research, ethical standards including obtaining informed consent, ensuring privacy and confidentiality were observed.

#### References

- Anvari, A. (2021). The Integration of LARG Supply Chain Paradigms and Supply Chain Sustainable Performance (A Case Study of Iran). Production & Manufacturing Research, 9(1), 157-177. https://doi.org/10.1080/21693277.2021.1963349
- Beamon, B. M. (1999). Measuring Supply Chain Performance. International Journal of Operations & Production Management, 19(3), 275-292. https://doi.org/10.1108/01443579910249714
- Eldin, N. A., Aidaros, H., Khalaf-Allah, S. S., Diab, M. M., & Bahgy, H. E. E. (2023). An Application Study for Monitoring and Evaluation of the Hygienic Status of Poultry Farms. *Benha Veterinary Medical Journal*, 43(2), 51-57. https://doi.org/10.21608/bvmj.2022.165311.1597
- Fathelrahman, E., Awad, A. I. E., Mohamed, A. I., Eltahir, Y. M., Hassanin, H. H., Mohamed, M. E., & Hoag, D. L. (2020). Biosecurity Preparedness Analysis for Poultry Large and Small Farms in the United Arab Emirates. *Agriculture*, 10(10), 426. https://doi.org/10.3390/agriculture10100426
- Golden, C. E., Rothrock, M. J., & Mishra, A. (2021). Mapping Foodborne Pathogen Contamination Throughout the Conventional and Alternative Poultry Supply Chains. *Poultry Science*, 100(7), 101157. https://doi.org/10.1016/j.psj.2021.101157
- Hafez, H. M., & Attia, Y. A. (2020). Challenges to the Poultry Industry: Current Perspectives and Strategic Future After the

COVID-19 Outbreak. *Frontiers in veterinary science*, 7. https://doi.org/10.3389/fvets.2020.00516

- Hakeem, M. J., & Lu, X. (2021). Survival and Control of Campylobacter in Poultry Production Environment. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.615049
- Hamed, A., & Bohari, A. M. (2022). Adoption of Big Data Analytics in Medium-Large Supply Chain Firms in Saudi Arabia. *Knowledge and Performance Management*, 6(1), 62-74. https://doi.org/10.21511/kpm.06(1).2022.06
- Kler, R., Gangurde, R., Elmirzaev, S., Hossain, S., Vo, N. T. M., Nguyen, V. T., & P, N. K. (2022). Optimization of Meat and Poultry Farm Inventory Stock Using Data Analytics for Green Supply Chain Network. *Discrete Dynamics in Nature and Society*, 2022, 1-8. https://doi.org/10.1155/2022/8970549
- Leuschner, R., Rogers, D. S., & Charvet, F. F. (2013). A Meta-Analysis of Supply Chain Integration and Firm Performance. *Journal of Supply Chain Management*, 49(2), 34-57. https://doi.org/10.1111/jscm.12013
- Li, N., Ren, Z., Li, D., & Zeng, L. (2020). Review: Automated Techniques for Monitoring the Behaviour and Welfare of Broilers and Laying Hens: Towards the Goal of Precision Livestock Farming. *Animal*, 14(3), 617-625. https://doi.org/10.1017/s1751731119002155
- Liu, K. P., Chiu, W., Chu, J., & Zheng, L. J. (2022). The Impact of Digitalization on Supply Chain Integration and Performance. *Journal of Global Information Management*, 30(1), 1-20. https://doi.org/10.4018/jgim.311450
- Masud, A. A., Rousham, E. K., Islam, M. A., Alam, M.-U., Rahman, M., Mamun, A. A., Sarker, S., Asaduzzaman, M., & Unicomb, L. (2020). Drivers of Antibiotic Use in Poultry Production in Bangladesh: Dependencies and Dynamics of a Patron-Client Relationship. *Frontiers in veterinary science*, 7. https://doi.org/10.3389/fvets.2020.00078
- Poudel, A., Sharma, S., Dhital, K., Bhandari, S., Napit, R., Puri, D., & Karmacharya, D. (2023). Poor Biosafety and Biosecurity Practices and Haphazard Antibiotics Usage in Poultry Farms in Nepal Hindering Antimicrobial Stewardship. https://doi.org/10.1101/2023.04.17.536518
- Samaranayake, P., & Laosirihongthong, T. (2016). Configuration of Supply Chain Integration and Delivery Performance. *Journal of Modelling in Management*, 11(1), 43-74. https://doi.org/10.1108/jm2-01-2014-0005
- Sezen, B. (2008). Relative Effects of Design, Integration and Information Sharing on Supply Chain Performance. Supply Chain Management an International Journal, 13(3), 233-240. https://doi.org/10.1108/13598540810871271
- Sibanda, N., McKenna, A., Richmond, A., Ricke, S. C., Callaway, T. R., Stratakos, A. C., Gundogdu, O., & Corcionivoschi, N. (2018). A Review of the Effect of Management Practices on Campylobacter Prevalence in Poultry Farms. *Frontiers in microbiology*, 9. https://doi.org/10.3389/fmicb.2018.02002
- Ucenic, C. I., & Ratiu, C. (2017). Improving Performance in Supply Chain. *Matec Web of Conferences*, 137, 01018. https://doi.org/10.1051/matecconf/201713701018
- Wilujeng, S. R., Sarwoko, E., & Nikmah, F. (2022). Triple-a Strategy: For Supply Chain Performance of Indonesian SMEs. Uncertain Supply Chain Management, 10(1), 95-100. https://doi.org/10.5267/j.uscm.2021.10.007

