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Objective:  Linear ARMA and GARCH models have numerous applications in 

the field of time series forecasting. The primary objective of this article is to 

present a model for estimating stock market shocks based on the ARMA-GARCH 

model in the Tehran Stock Exchange.  

Methodology:  For this purpose, 15-minute intraday data of the overall index and 

the equal-weighted index for the period from June 10, 2018, to March 18, 2019, 

including the opening, closing, highest, and lowest values of the mentioned 

indices, were used. For the analysis and fitting of the models to estimate market 

shocks, the Pandas, Numpy, and armagarch packages in Python 3.9 software were 

employed. The goodness-of-fit test was used to evaluate the suitability of the 

fitted models.  

Findings: The results indicated that the fitted models for estimating market 

shocks, based on the Akaike criterion and the goodness-of-fit test, were the best 

and most suitable models, although the selected models differed for the two 

indices. 

Conclusion: The findings of this study indicate that the ARMA-GARCH model 

is effective in estimating stock market shocks in the Tehran Stock Exchange. The 

optimal models identified were ARMA(2,3)-GARCH(1,1) for the overall index 

and ARMA(1,2)-GARCH(1,1) for the equal-weighted index. The results suggest 

that while the ARMA order varied between the indices, the GARCH order 

remained consistent, highlighting the model's robustness. Additionally, the 

analysis demonstrated that the new series of changes (market shocks) were 

completely random and non-normal, confirming the model's capability in 

accurately capturing market dynamics and providing valuable insights for traders 

and policymakers. 
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1 Introduction 

owadays, discovering appropriate patterns for 

predicting unexpected market shocks is a challenging 

issue among econometric researchers. Market shock is 

defined as sudden changes in the prices of financial assets. 

Explaining financial shocks through traditional financial 

models faces difficulties since conventional financial pricing 

models like CAPM or the Fama-French three-factor model 

estimate the expected market return by linearly combining 

historical information and adding other variables to the 

model's error term (Fama & French, 1993). 

For market participants, finding approaches to improve 

the performance of future market shock predictions, 

although it seems simple, is a valuable effort. Successfully 

estimating price shocks through the development of new 

pricing models has benefits such as introducing trading 

strategies, discovering market inefficiencies, and identifying 

warning signs to prevent stock market crashes, which seem 

useful in policymaking and regulatory frameworks within 

the financial system (Sun et al., 2019). 

According to Fuller (1998), price shock originates from 

three potential sources: the existence of upstream (private) 

information, differences in information processing 

capabilities, and behavioral biases. He believes that factor 

models or time series models have the ability to predict stock 

market shocks. In factor models like the Capital Asset 

Pricing Model and the Fama-French three-factor model, 

price shock is considered a price anomaly (or alpha) (Xiao 

et al., 2017; Zhang et al., 2016). 

Previous research has examined the impact of 

heterogeneous factors on financial market shocks, including 

the effect of seasonal stock returns (Keim, 1983), holiday 

effects (Kim & Park, 1994), weather effects (Hirshleifer & 

Shumway, 2003), social sentiment (Da et al., 2011; Leung et 

al., 2016; Xiao et al., 2017; Zhang et al., 2015), opinion 

sharing in social networks (Park et al., 2013), and 

information volume (Leung et al., 2016; Park et al., 2013). 

Time series prediction models focus on inferring from the 

linear characteristics of the data. For instance, 

simultaneously considering the effects of historical price 

returns and the error component in the past in the 

autoregressive moving average model, known as the ARMA 

model, combines the autoregressive structure of financial 

returns with the mean of moving errors linearly (Sun et al., 

2019). 

To discover optimal volatility patterns for improved 

prediction performance, Engle and Ng (1993) modeled the 

volatility component of ARMA models with the 

autoregressive conditional heteroskedasticity (ARCH) 

model (Engle & Ng, 1993). Additionally, the generalized 

autoregressive conditional heteroskedasticity (GARCH) 

model, introduced by Bollerslev (1986), is widely used in 

financial time series forecasting and pricing issues. Fabozzi 

and Xie (2017; 2019) used autoregressive models in asset 

pricing prediction to discover price bubbles, utilizing 

traditional time series models and daily data with slight 

volatility. In contrast, data-driven financial models like 

neural networks are characterized by high stock return 

volatility (Fabozzi & Xiao, 2017, 2019), index price 

volatility (Engle, 2002), and duration analysis (Engle & 

Russell, 1998). 

Existing empirical and theoretical evidence suggests that 

using non-similar models with significant differences to 

form a combined model and obtain lower variance and error 

is more appropriate. Furthermore, due to the presence of 

variable and unstable patterns in the data, using a combined 

model can reduce model uncertainty, which typically arises 

in statistical inference and time series prediction 

(Abbasinejad & Gudarzi Farahani, 2014). Moreover, fitting 

the data initially with the ARMA-GARCH model can reduce 

the likelihood of overfitting, a common issue in neural 

network prediction. 

Therefore, the overall objective of this research is to 

present a model for estimating stock market shocks in the 

Tehran Stock Exchange. 

2 Methods and Materials 

Given that this research involves applying nonlinear 

ARCH/GARCH family models in a specific context (stock 

market shock estimation), it is considered applied research 

based on its objective. Moreover, since it aims to examine 

the trend changes of a specific variable (market indices) over 

time, it is a descriptive-survey study by nature. 

2.1 Data Collection Method 

As the primary goal of this research is to provide a model 

for estimating shocks in Tehran Stock Exchange companies, 

theoretical resources were collected through library 

research, and the necessary data for research questions were 

collected through field research. The required data were 

extracted by visiting the website of the Tehran Stock 

Exchange Technology Management Company and using the 

Rahavard Novin software. 

N 
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The dataset used in this research includes two indices, the 

overall index and the equal-weighted index, in the Tehran 

Stock Exchange for the period from June 10, 2018, to March 

18, 2019, including the opening, closing, highest, and lowest 

values for 15-minute intraday data from 9:00 AM to 12:30 

PM. The data was collected from the Rahavard Novin 

software and the website of the Tehran Stock Exchange 

Technology Management Company (http://tsemc.com). 

To organize the data and perform preliminary 

calculations on raw data, Excel software was used. For data 

analysis and model fitting to determine market shocks, 

Python 3.9 software was employed. 

2.2 Data Analysis Techniques 

The data used in this research for modeling and 

estimating stock market shocks during the period from June 

10, 2018, to March 18, 2019, based on intraday data from the 

overall index and the equal-weighted index, collected from 

the Rahavard Novin software, were used. Logarithmic 

returns were used to calculate the returns of these indices. 

Using Eviews software and the augmented Dickey-Fuller or 

Phillips-Perron method, the stationarity of the time series 

returns was examined. 

Regarding skewness, if the skewness of the distribution is 

zero, the distribution is normal; if it is greater than zero, it 

indicates more weight in the left tail, and if it is less than 

zero, it indicates more weight in the right tail. Kurtosis is 

equal to the normalized fourth moment; in other words, 

kurtosis measures the sharpness of the curve at the maximum 

point. The kurtosis value for a normal distribution is 3 

(Johnson et al., 2001). 

In the next step, market shock is estimated using the 

ARMA-GARCH model (a series of new changes). 

2.3 Definition of Variables 

2.3.1 Autoregressive Moving Average Model 

In statistics and signal processing, the autoregressive 

moving average model, known as the ARMA model, and 

sometimes referred to as the Box-Jenkins model, is typically 

used for analyzing time series data. For time series data 

denoted as X_t, the ARMA model is a tool for studying and 

potentially predicting future values of such series. This 

model includes two components: autoregressive (AR) and 

moving average (MA). Therefore, the ARMA model is 

represented in the scientific literature as ARMA(p, q), where 

p and q are the orders of the AR and MA models, 

respectively. A general ARMA(p, q) model is expressed as: 

y_t = μ + φ_1 y_(t-1) + φ_2 y_(t-2) + ... + φ_p y_(t-p) + 

ε_t - θ_1 ε_(t-1) - θ_2 ε_(t-2) - ... - θ_q ε_(t-q) 

2.3.2 Autoregressive Integrated Moving Average Model 

In statistics and econometrics, especially in time series 

analysis, an integrated autoregressive moving average 

(ARIMA) model is a broader version of the ARMA model. 

These models are used in time series analysis to understand 

better or predict future trends. These models are applied 

when the data are non-stationary. If a time series becomes 

stationary after d orders of differencing and is then modeled 

using an ARMA(p, q) process, the original time series is an 

ARIMA(p, d, q) model. This model is often represented as 

ARIMA(p, d, q), where p, d, and q are non-negative real 

numbers indicating the order of autoregression, integration, 

and moving average, respectively. ARIMA models form a 

crucial part of the Box-Jenkins methodology for time series 

modeling (Box et al., 1970). 

2.3.3 Autoregressive Conditional Heteroskedasticity 

Model 

The autoregressive conditional heteroskedasticity 

(ARCH) model was proposed by Engle in 1982. This model 

considers the weights in variance calculation as unknown 

parameters and estimates them, allowing the best weights to 

be estimated based on the data for predicting variance. In this 

model, the variance of each period is explained based on the 

P periods of previous residuals: 

σ_t^2 = ω + Σ_(i=1)^p α ε_(t-1)^2 

This ARCH model is based on the residuals of the P 

previous periods and is thus denoted as ARCH(P). 

2.3.4 Generalized Autoregressive Conditional 

Heteroskedasticity Model 

This model was generalized by Bollerslev in 1986, named 

the generalized autoregressive conditional 

heteroskedasticity (GARCH) model. This model also 

includes the weighted average of the previous periods' 

squared residuals, but the weights continuously decrease and 

never become zero. Additionally, the setup cost of this 

model is low, and parameter estimation is relatively simple 

while being significantly successful in predicting 

conditional variances. The generalized model is formulated 

as: 

https://portal.issn.org/resource/ISSN/3041-8992
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σ_t^2 = ω + Σ_(i=1)^p α ε_(t-1)^2 + Σ_(l=1)^q β σ_(t-

i)^2 

In this model, the variance prediction for the upcoming 

period uses the residual series for the p previous periods and 

the q periods of past estimated variances and is denoted as 

GARCH(p, q). In other words, p is the order of the ARCH 

term, and q is the order of the GARCH term. 

The ARMA-GARCH model is an integration of the 

ARMA and GARCH models. In this model, the conditional 

mean of the observations follows the ARMA model, and the 

conditional variance of the observations, given the previous 

observations, follows the GARCH model. 

To estimate market shocks, the ARMA-GARCH model 

is fitted: 

Given the market returns at time t, the combined 

ARMA(p, q)-GARCH(m, n) model is as follows: 

r_t = c + Σ_(i=1)^p ρ_i r_(i-1) + ε_t + Σ_(j=1)^q θ_i ε_(t-

j) (i) 

ε_t = σ_t z_t, z_t ~ N(0,1) (ii) 

σ_t^2 = ω + Σ_(k=1)^m α_k ε_(t-k)^2 + Σ_(l=1)^s θ_l 

σ_(t-l)^2 (iii) 

Equation (i) determines the ARMA components, and 

equations (ii) and (iii) determine the GARCH components. 

r_t-i: Autoregressive terms including historical market 

returns 

ε_t-j: Moving average terms 

α_k, β_l, θ_j, φ_i: Model coefficients 

w and c: Constant coefficients 

ε_t: Error term at time t (white noise process) 

z_t: Standardized error term at time t 

The lags p, q, s, and m are determined by fitting the best 

predictive model. 

2.3.5 Market Shock 

Shock, in general, is defined as sudden changes in the 

prices of financial assets. Operationally, the market shock 

z_t at time t is defined as: 

z_t = ε_t / σ_t 

The direction of the market shock at time t is determined 

by the sign of z_t. 

2.4 Population and Sampling Method 

The population includes all real or hypothetical members 

to whom the research results apply, as it is impossible to 

research all population members. Furthermore, if the 

sampling results are to be satisfactory, one must fully 

understand the set of activities and stages used to select a 

representative sample of the population. The first step in 

conducting research is to determine the research objectives, 

and to understand and clarify these objectives, one must first 

define the population from which the sample is to be 

selected. 

The statistical sample consists of individuals selected 

from the population, whose information is collected and 

analyzed, and ultimately generalized to the population. The 

statistical population of the research includes the overall 

index and the equal-weighted index, with the period from 

June 10, 2018, to March 18, 2019, for 15-minute intraday 

data (including 2,521 data points) selected as the statistical 

sample. 

3 Findings and Results 

Initially, the intraday returns of the two indices, the 

overall index and the equal-weighted index, must be 

examined using descriptive statistics to determine the trends 

of variables in terms of central tendency and dispersion. 

Table 1 presents the descriptive statistics of the research 

variables. The descriptive statistics include central indices 

(mean, median), dispersion indices (maximum, minimum, 

standard deviation, skewness coefficient, and kurtosis 

coefficient).  

Table 1 

Descriptive Statistics of Intraday Returns Data 

Index Type Mean Median Maximum Minimum Standard Deviation Kurtosis Coefficient Skewness Coefficient 

Overall Index 0.0001 -0.000023 0.0143 -0.015 0.0013 38.81 2.061 

Equal-weighted Index 0.00011 0.000010 0.0105 -0.0093 0.00088 43.80 1.37 

 

As shown in Table 1, the mean of the overall index and 

the equal-weighted index are very close to each other. 

Additionally, the skewness and kurtosis coefficients in these 

indices indicate that the distribution of variables is not 

normal. 

https://portal.issn.org/resource/ISSN/3041-8992
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To examine the stationarity of the intraday logarithmic 

returns, the unit root test is used. For this test, the Augmented 

Dickey-Fuller (ADF) and Phillips-Perron (PP) tests were 

employed. The results are presented in Table 2. 

Table 2 

Unit Root Test Results of the Indices 

Index ADF Statistic PP Statistic 

Overall Index -6.917 (p-value = 0.000) -43.557 (p-value = 0.000) 

Equal-weighted Index -5.107 (p-value = 0.000) -47.207 (p-value = 0.000) 

 

According to the presented results, based on the ADF and 

PP tests, the test statistic is greater than the critical value at 

the 1%, 5%, and 10% probability levels, and since prob < 

0.05, the time series of returns for all three indices do not 

have a unit root and are stationary. 

Initially, to determine the ARMA order range, the optimal 

ARIMA model with the lowest Akaike value for the overall 

index and the equal-weighted index is determined: First, the 

ARIMA model order results and then the model outputs for 

the overall index are calculated, and the results are shown in 

figures below: 

Figure 1 

ARIMA(4,0,3) Model Results for the Overall Index 

 

https://portal.issn.org/resource/ISSN/3041-8992
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Figure 2 

ARIMA(4,0,3) Output for the Overall Index 

 

Figure 3 

ARIMA Residual Output for the Overall Index 
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Then, for the equal-weighted index, similar to the overall 

index, the ARIMA model order results and then the model 

outputs are calculated, and the results are shown in figures 

below:

Figure 4 

ARIMA(4,0,3) Model Results for the Equal-weighted Index 

 

Figure 5 

ARIMA(4,0,3) Output for the Equal-weighted Index 

 

https://portal.issn.org/resource/ISSN/3041-8992


 Rahimi et al.                                                   International Journal of Innovation Management and Organizational Behavior 3:5 (2023) 181-186 

 

 181 

E-ISSN: 3041-8992 
 

Figure 6 

ARIMA Residual Output for the Equal-weighted Index 

 

Table 3 

Descriptive Statistics of ARIMA Residual Data 

Index Type Mean Median Maximum Minimum Standard Deviation 

Overall Index 0.000042 -0.000043 0.014483 -0.014988 0.001278 

Equal-weighted Index 0.000023 -0.000038 0.009817 -0.010115 0.000813 

 

Given the ARIMA Density output for both the overall 

index and the equal-weighted index, it is observed that the 

distribution of the series in both indices is completely 

normal. Additionally, the probability values for AC and PAC 

for both indices are greater than 0.05, so it can be said that 

the new series of changes (stock market shocks) for both 

indices are non-random and normal. Therefore, the ARMA-

GARCH combined model using the ARMA-GARCH 

package in Python 3.9 software will be used. 

For selecting the ARMA-GARCH combined model 

order, different ARMA-GARCH models with various orders 

were tested, and in this research, Akaike criteria were used 

to select the appropriate model. The model with the lowest 

Akaike criteria value is the most suitable model. The results 

are shown below: 

Table 4 

Akaike Criteria Value and Model Order in Various ARMA-GARCH Patterns 

Index AIC AR MA P q 

Overall Index -23573.32613 2 3 1 1 

Equal-weighted Index -26368.26423 1 2 1 1 

Table 5 

Best ARMA-GARCH Combined Model 

Index ARMA-GARCH Model Degrees of Freedom 

Overall Index ARMA(2,3)-GARCH(1,1) 8 

Equal-weighted Index ARMA(1,2)-GARCH(1,1) 6 

https://portal.issn.org/resource/ISSN/3041-8992
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The output of the ARMA-GARCH model includes 

expected return, conditional variance, and standardized 

residuals (market shocks) for both the overall index and the 

equal-weighted index, as shown in figures below. 

Figure 7 

ARMA(2,3)-GARCH(1,1) Model Output for the Overall Index 

 

Figure 8 

ARMA(1,2)-GARCH(1,1) Model Output for the Equal-weighted Index 

 

For the goodness-of-fit test, the AC and PAC coefficients 

for the new series of changes are used. The AC and PAC 

coefficients for the new series of changes for the overall 

index and the equal-weighted index can be observed in 

figures below. As seen, the probability values for AC and 

PAC are less than 0.05 and are within the confidence 

interval. Therefore, these series observations are 

independent of each other, and the new series of changes are 

completely random. As a result, the fitted models are 

suitable models. 
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Figure 9 

AC and PAC Coefficients for the New Series of Changes in the Overall Index 

 

Figure 10 

AC and PAC Coefficients for the New Series of Changes in the Equal-weighted Index 

 

 

Given the determination of the ARMA-GARCH model 

orders, the optimal ARMA-GARCH model for the overall 

index and the equal-weighted index is determined as 

follows: 

Optimal ARMA-GARCH Model for the Overall Index: 

ARMA(2,3)-GARCH(1,1): 

r_t = 0.77 r_(t-1) + 0.514 r_(t-2) + ε_t + 0.104 ε_(t-1) - 

0.48 ε_(t-2) + 0.001 ε_(t-3) 

σ_t^2 = 0.09 ε_(t-1)^2 + 0.72 σ_(t-1)^2 

Optimal ARMA-GARCH Model for the Equal-weighted 

Index: 

ARMA(1,2)-GARCH(1,1): 

r_t = 0.605 r_(t-1) + ε_t - 0.452 ε_(t-1) + 0.085 ε_(t-2) 

σ_t^2 = 0.081 ε_(t-1)^2 + 0.648 σ_(t-1)^2 

Table 6 

Descriptive Statistics of Market Shock Data (New Series of Changes) 

Index Type Mean Median Maximum Minimum Standard Deviation Kurtosis Coefficient Skewness Coefficient 

Overall Index 0.025 -0.0076 4.18 -4.48 0.377 49.36 2.47 

Equal-weighted Index 0.13 0.089 5.66 -4.87 0.440 46.05 1.71 

 

As shown in Table 6, the mean of the overall index and 

the equal-weighted index are very close to each other. 

Additionally, the skewness coefficient (greater than zero) 

and kurtosis coefficient (greater than 3) in these indices 

indicate that the distribution of the series is not normal. 

Figure 11 presents the time series plot of changes (market 

shock) for the combined ARMA(2,3)-GARCH(1,1) model 

for the overall index. 

Figure 12 presents the time series plot of changes (market 

shock) for the combined ARMA(1,2)-GARCH(1,1) model 

for the equal-weighted index. 

https://portal.issn.org/resource/ISSN/3041-8992
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Figure 11 

New Series of Changes (Market Shock) for the Overall Index 

 

Figure 12 

New Series of Changes (Market Shock) for the Equal-weighted Index 

 

 

4 Discussion and Conclusion 

The present study aimed to provide a model for 

estimating stock market shocks using the ARMA-GARCH 

model in the Tehran Stock Exchange. The statistical 

population of this research consisted of the overall index and 

the equal-weighted index, with the period from June 10, 

2018, to March 18, 2019, for 15-minute intraday data 

(including 2,521 data points) selected as the statistical 

sample. 

Excel software was used to organize data and perform 

preliminary calculations on raw data, while Python 3.9 

software was employed for data analysis and model fitting 

to determine market shocks. 

The input data to the conceptual model was the intraday 

logarithmic return series related to the 15-minute index from 

June 10, 2018, to March 18, 2019, with 2,521 data points for 

both the overall index and the equal-weighted index. 

The results of descriptive statistics of intraday returns 

show that the mean of the overall index and the equal-

weighted index are very close to each other. Additionally, 

the skewness and kurtosis coefficients in these indices 

indicate that the distribution of variables is not normal. 

The results of the unit root test to examine the stationarity 

of intraday logarithmic returns show that based on the ADF 

and PP tests, since the test statistic for all three indices was 

greater than the critical value at the 1%, 5%, and 10% 

probability levels and prob < 0.05, the time series of returns 

for all three indices did not have a unit root and were 

stationary. 

The purpose of this research was to use the ARMA-

GARCH model to identify stock market shocks in the 

Tehran Stock Exchange. The ARMA-GARCH model was 

used in the conceptual model to identify and estimate stock 

market shocks. The input to the ARMA-GARCH model was 

the intraday logarithmic return series, which after analysis, 

the model order for both indices was determined based on 

the Akaike criterion. 

Given the research question regarding the optimal model 

for estimating stock market shocks based on the ARMA-
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GARCH approach in Iran, as this research was conducted on 

two indices, the overall index and the equal-weighted index, 

the models presented for the two indices were different. For 

the overall index, the ARMA(2,3)-GARCH(1,1) model with 

8 degrees of freedom was chosen, while for the equal-

weighted index, the ARMA(1,2)-GARCH(1,1) model with 

6 degrees of freedom was selected as the appropriate model. 

As observed, the ARMA model order was different for the 

indices, but the GARCH model order was the same for both 

indices, which answers the research question. 

As indicated in the obtained results, the probability values 

for AC and PAC for both indices were less than 0.05, 

indicating that the new series of changes (stock market 

shocks) for both indices are completely random. Therefore, 

based on the specific objective of this research, stock market 

shocks for both the overall index and the equal-weighted 

index were estimated using the ARMA-GARCH model as a 

time series (new series of changes) and were found to be 

completely random and non-normal. The graphs for both the 

overall index and the equal-weighted index are displayed at 

the end of the findings. 
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